
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for revdewrng instructions, searching esisting data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden toWashington Headquarters Services, Directorate for Information Operatims and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, aid to the Office of
Management and Bud1get, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
blank) I March 26, 2007 Final Report Aug 31, 2001 to Dec 1, 2006
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
PECASE: Next Generation Systems Languages F49620-01-1-0298

6. AUTHOR(S)
Morrisett, Greg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Cornell University 40078
Ithaca, New York 14853

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFOSR
Suite 325, Room 3112
875 Randolph Street
Arlingtor VA 22203-1768, It /..S1VAl 22 [-1-8. I ,j&f() AFRL-SR-AR-TR-07-0128

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION ) AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release; distribution is Unlimited

A-
13. ABSTRACT (Maximum 200 Words)
The goal of this work is to explore techniques for making today's software, which is
largely written in type-unsafe, low-level languages such as C, as reliable and trustworthy
as code written in type-safe, high-level languages such as Java or ML. Type-safe
languages automatically block or prevent common vulnerabilities such as buffer overruns,
format string attacks, and overflow attacks which are all too common in today's critical
software infrastructure. To this end, we have implemented a prototype compiler called
Cyclone, which provides the benefits of type safety through a combination of static
analysis, programmer annotations, and run-time checks. Particular emphasis has been
placed on scalable, static analyses to ensure that programmers can retain good performance
and high reliability.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Type-safety. Legacy code. Buffer overrun. 14

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2.89)
Prescribed by ANSI Std. Z39-18
298-102



Next Generation Systems Languages
AFOSR PECASE Grant F49620-01-1-0298

Final Report

31 August 2001 - 1 December 2006

Greg Morrisett
Computer Science Department

Harvard University
Cambridge, Massachusetts

(617) 495-9526 (phone)
greg~eecs .harvard. edu

Objectives

High-level programming languages, such as Java and C#, can increase the

reliability of systems and drastically cut development costs. One reason is

that the type checkers of these languages automatically identify common

programming errors at compile time. Another reason is that the type-safety
guarantee of such languages ensures that all primitive operations have a well-

defined semantics, thus bounding the space of possible behaviors of a program
with coding errors in it.

However, the operating systems, device drivers, network software, servers,

and databases that power our computational infrastructure are all written in
low-level, unsafe languages such as C or C++. Even the run-time systems,

garbage collectors, JIT-compilers, and much of the libraries for Java and

C# are coded in C. Consequently, these systems suffer from a variety of
preventable flaws that can cost time, security, money, and even lives. As

one example, over 50% of the successful attacks reported by the Computer
Emergency Response Team (CERT) involve buffer overruns-an attack that

20070503430



leverages the lack of type-safe arrays in C and C++. The Code Red and
Blaster worms are examples of malicious code that used buffer overruns to
cause widespread damage.

One reason for this state of affairs is that today's software systems started
out in unsafe, low-level languages and have been evolved over many years.
At this point, it is too expensive to throw out the existing code and replace
it with code written in a high-level language. For example, Windows Vista
contains over 60 million lines of code, much of which was inherited from
Windows XP, which was in turn evolved from Windows NT. Microsoft simply
cannot afford to pay the development costs needed to re-code an operating
system that has been evolved over fifteen years.

Even if Microsoft could afford to re-code Vista in a type-safe language,
there are substantial technical issues that prevent the adoption of today's
high-level language technology for building production systems. In particu-
lar, the very mechanisms used to enhance safety prevent programmers from:

1. achieving high performance and low resource consumption,

2. interoperating with legacy systems,

3. directly accessing and controlling memory and devices, and

4. reasoning about the space or time requirements of programs.

Thus, even if we could start from scratch, we would have no effective, safe
environment for re-coding our infrastructure.

Therefore, the goal of this project was to explore the design, implementa-
tion, and foundations of safe, low-level programming languages. The primary
aim was to gain a deeper understanding of how programmers can gain control
over the performance and interoperability of systems code without sacrificing
type safety. In addition, the project aimed to introduce new language-level
invariants and enforcement tools that go well beyond simple types and that
can be used to build systems that are truly robust.

To evaluate the effectiveness of proposed mechanisms, the project built
a prototype, next-generation systems language called Cyclone. Cyclone is
based upon ANSI C so that the language can be used and evaluated in real
systems contexts. In particular, the project ported and evaluated a number
of medium sized programs from C to Cyclone. Basing the language upon
C also ensured that systems programmers would be comfortable using the

2



language, and that interoperability with legacy C (and C++) code would be
relatively simple.

Unlike C, Cyclone comes equipped with an advanced type and assertion
system that (a) allows programmers to state and enforce crucial program in-
variants, (b) lets tools automatically check for safety and security properties,
(c) gives the compiler sufficient information to produce high-performance
code. All of the sources and documentation for Cyclone have been made
freely available to the public (with an open-source license) and can be found
on the Web at http://cyclone. thelanguage. org.

Status of Effort

Normal C programs can crash in any number of ways due to at least the
following:

"* unsafe casts

"* unsafe pointer arithmetic

"• dereferencing a pointer to deallocates storage

"* failing to deallocate storage

"* failure to allocate large enough buffers

"* failure to test for NULL pointers

"• unsafe unions

Cyclone prevents all of these problems (and more) through a combination of
static and dynamic checks [7]. For instance, all pointer arithmetic in Cyclone
is checked to ensure that pointer dereferences lie within the boundaries of a
given object.

The Cyclone type checker rules out many simple errors, such as unsafe
casts, at compile-time. The key challenge was ensuring that the the type-
checker does not reject common idioms that are safe, but use potentially un-
safe primitives. To this end, Cyclone supports various forms of polymorphism
including parametric polymorphism, existential polymorphism, and physical

3



subtype polymorphism. Many subtelties arise in the interaction of polymor-
phism with the imperative features in C (e.g., the address-of-operator) [1],

and thus great care had to be taken to ensure soundness.
The Cyclone type checker also rules out many simple memory manage-

ment errors, such as dereferencing a pointer to a stack-allocated object which
has been deallocated. To do so, Cyclone employs a sophisticated region-
based, type-and-effect system [6] as well as a form of linear (or tracked)

pointers [19,24]. In essence, the type checker conservatively tracks the set of
locations that have not been deallocated at each program point. Program-
mers must provide annotations on procedure boundaries and data structures

to give the type-checker enough information to be effective. However, in prac-

tice, the annotations are quite small and can be inferred with an external
tool [19].

Some problems, such as an array index out of bounds, are prevented
by run-time checks inserted by the compiler. To support these checks, the

Cyclone compiler must also insert extra meta data on key objects so that the
bounds can be determined dynamically. Constructing and maintaining the
meta data is a serious source of ineffeciency and thus the Cyclone compiler
performs a number of analyses to minimize the overheads.

Finally, the Cyclone type checker provides limited support for extended

static checking, wherein programmers can specify pre- and post-conditions
on procedures, and static assertions on loops. The compiler uses these pre-

and post-conditions to refine its analysis so that most checks can be safely
eliminated. For example, when bootstrapping the compiler (which is itself
written in Cyclone), over 92% of the NULL-pointer and array-bounds checks

are automatically eliminated.
The project ported both small benchmarks as well as complete applica-

tions to Cyclone to determine the overheads introduced by the compiler [20].

On small benchmarks, the Cyclone code is on average about 60% slower than
unsafe C code. In contrast, Java is about 650% (over an order of magnitude)
slower than C code. For more realistic benchmarks, the overheads of Cyclone
do not seem to be a problem. For example, when ported from C to Cyclone,

the Boa web server came within 2% of the C performance on throughput
tests.

4



Accomplishments

The key technical accomplishments of this project are as follows:

" Adapted parametric and subtype polymorphism to low-level C code;
constructed models and proofs of soundness for the resulting type sys-
tem. In so doing, the project uncovered a number of subtle, previously
unrecognized issues when parametric polymorphism is combined with
pointer arithmetic.

" Designed, modeled, proved correct, and implemented a region-based,
type-safe memory management system. This part of the type system
ensures that code respects the lifetimes of data that are allocated on
the stack or in lexically-scoped regions. In practice, this part of the
type system was crucial for avoiding the overheads of heap-allocation
when porting code from C to Cyclone and accounts for a relatively large
part of the performance win of Cyclone over existing safe languages.

" Designed, modeled, proved correct, and implemented extensions to the
region-based type system to support linear (a.k.a. tracked) pointers.
The linear pointers in Cyclone allow programmers to have a much finer
degree of control over the lifetimes of heap-allocated data. They can be
used to safely implement a wide range of memory management strate-
gies, including standard malloc/free, arenas, and reference counting.
With the addition of these facilities, Cyclone became the first type-
safe language that could be used to build a garbage collector within
the language, and without itself needing a meta-level garbage collector
[14].

" Designed, modeled, proved correct, and implemented a static extended
checker for Cyclone that ensures certain run-time checks, which are
needed to ensure type safety, can be safely eliminated at compile time.
The extended static checker runs as fast as a conventional type-checker,
and yet statically verifies a range of properties that are outside the
scope of traditional type-checkers including array bounds checks and
NULL-pointer checks.

"* The project produced four Ph.D.'s (J.Cheney, D.Grossman, M.Fluet,
and S.Weirich.) Of these, three now have top faculty positions at lead-
ing univerities (Grossman is at Univ. of Washington, Fluet at Toyota

5



Technical Institute, and Weirich at Univ. of Pennsylvania) and one is a
post doctoral candidate (Cheney at Univ. of Edinburgh.) In addition,
the project supported two post doctoral candidates who now have fac-
ulty positions (M.Hicks at Univ. of Maryland, and A.Ahmed at Toyota
Technical Institute.) Finally, the project supported two undergradu-
ate students who are now in top Computer Science graduate programs
(Francis Spaulding at Princeton, and Daniel Lee at Carnegie Mellon.)

Personnel Supported

Faculty: Greg Morrisett

Post Doctoral Students: Michael Hicks, Amal Ahmed

Graduate Students: James Cheney, Daniel Grossman, Matthew Fluet,
Yanling Wang, Stephanie Weirich.

Undergraduate Students: Frances Spaulding, Daniel Lee.

Publications:

Copies of the publications can be found at the PI's web site: http: //www.
eecs. harvard. edu/-greg.

1. G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed
assembly language. Journal of Functional Programming 12, No. 1
(January 2002), University Press, Cambridge, England, 43-88.

2. Frederick Smith. Certified Run-Time Code Generation. Ph.D. Thesis,
Cornell University, January 2002.

3. Dan Grossman. Existential Types for Imperative Languages. Type
checking systems code. Eleventh European Symposium on Program-
ming (Grenoble, France, April 2002), Lecture Notes in Computer Sci-
ence Volume 2305, 21-35.

4. Stephanie Weirich. Higher-order intensional type analysis. Eleventh
European Symposium on Programming (Grenoble, France, April 2002),
Lecture Notes in Computer Science Volume 2305, 98-114.

6



5. G. Morrisett. Type checking systems code. Eleventh European Sympo-
sium on Programming (Grenoble, France, April 2002), Lecture Notes
in Computer Science Volume 2305, 1-5.

6. D. Grossman, G. Morrisett, T. Jim, M. Hicks, J. Cheney, and Y. Wang.
Region-based memory management in Cyclone. ACM Conference on
Programming Language Design and Implementation (Berlin, Germany,
June 2002), 282-293.

7. T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.

Cyclone: A safe dialect of C. Usenix Annual Technical Conference
(Monterey, CA, June 2002), 275-288.

8. Stephanie Weirich. Programming With Types. Ph.D. Thesis, Cornell
University, July 2002.

9. Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-

morphism in type erasure semantics. Journal of Functional Program-

ming, 12(6):567-600, November 2002.

10. Daniel J. Grossman. Type-Safe Multithreading in Cyclone. ACM
Workshop on Types in Language Design and Implementation (New Or-
leans, LA, January 2003).

11. Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and
Trevor Jim. Compiling for template-based run-time code generation.
Journal of Functional Programming, 13(3):677-708, May 2003.

12. James Cheney and Christian Urban. System description: Alpha-Prolog,
a fresh approach to logic programming modulo alpha-equivalence. Work-

shop on Unification (Valencia, Spain, May, 2003).

13. Daniel J. Grossman. Safe Programming at the C Level of Abstraction.
Ph.D. Thesis, Cornell University, August 2003.

14. Matthew Fluet and Daniel Wang. Implementation and Performance
Evaluation of a Safe Runtime System in Cyclone. Proceedings of the

SPACE 2004 Workshop, (Venice, Italy, January 2004).

15. James Cheney. The Complexity of Equivariant Unification. Proceed-
ings of the 31st International Colloquium on Automata, Languages and

Programming (ICALP 2004), (Turku, Finland, July 2004).

7



16. M. J. Gabbay and J. Cheney. A Proof Theory for Nominal Logic.
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science (LICS 2004), (Turku, Finland, July 2004), 139-148.

17. James Cheney. Nominal Logic Programming. Ph.D. Thesis, Cornell
University, August 2004.

18. Matthew Fluet and Greg Morrisett. Monadic Regions. In Proceed-
ings of the A CM International Conference on Functional Programming
(ICFP'04), (Park City, Utah, September 2004), 103-114.

19. Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Expe-
rience with Safe Manual Memory-Management in Cyclone. In Proceed-
ings of the ACM International Symposium on Memory Management,
(ISMM'04), (Vancouver, British Columbia, October 2004), 73-84.

20. Dan Grossman, Michael Hicks, Trevor Jim, and Greg Morrisett. Cy-
clone: A Type-Safe Dialect of C. In C/C++ User's Journal, 23(1):6-13,
January 2005.

21. Greg Morrisett, Matthew Fluet and Amal Ahmed. L3: A Linear
Language with Locations. Seventh International Conference on Typed
Lambda Calculi and Applications (TLCA'05), (Nara, Japan, April 2005),
293-307.

22. Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed
model of substructural state. In Proceedings of the ACM International
Conference on Functional Programming (ICFP'05), (Tallinn, Estonia,
September 2005), 78-91.

23. Kevin Hamlen, Greg Morrisett and Fred B. Schneider. Computability
Classes for Enforcement Mechansisms. ACM Transactions on Program-
ming Languages and Systems, 28(1):175-205, January 2006.

24. Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear Regions
Are All You Need. European Symposium on Programming (ESOP'06),
(Vienna, Austria, March 2006).

25. Kevin Hamlen, Greg Morrisett, and Fred B. Schneider. Certified In-
Lined Reference Monitoring for .NET. ACM SIGPLAN Workshop on

8



Programming Languages and Security, (PLAS), (Ottawa, Canada, June
2006).

26. Matthew Fluet and Greg Morrisett. Monadic regions. Journal of Func-
tional Programming, 16(4-5):485-545, July 2006.

27. Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC
Architecture. 15th Usenix Security Symposium, (Vancouver, BC, Au-
gust 2006).

28. Matthew Fluet. Monadic and Substructural Type Systems for Region-
Based Memory Management. Ph.D. Thesis, Cornell University, Jan-
uary 2007.

Interactions/Transitions

"* Trevor Jim of AT&T research worked with us to develop the Cyclone
language, compiler, and tools. In addition, researchers at the Univer-
sity of Maryland, the University of Utah, Princeton, the University of
Washington, and the University of Pennsylvania, and Cornell are all
using Cyclone to develop research prototypes. Papers describing sys-
tems built with Cyclone have started to appear at major conferences,
including IEEE OpenARCH, International Working Conference on Ac-
tive Networks, and SOSP.

"* Morrisett serves on the Microsoft Trustworthy Computing Academic
Advisory Board. This group, which meets twice annually in Seattle,
advises Microsoft regarding a range of security and privacy issues.

"* Morrisett serves on the DARPA ISAT Advisory Board.

"* Morrisett serves on the Fortify Technical Advisory Board. Fortify has
adapted some of the ideas behind Cyclone's analysis in their product,
Fortify Source Code Analysis.

"* Morrisett serves on the editorial boards for: Journal of Functional Pro-
gramming (chief editor), Information Processing Letters, ACM Trans-
actions on Programming Languages and Systems. He also serves on

9



the Advisory Committee for the Semantics, Applications, and Imple-
mentations of Program Generation (SAIG) conference, and the ACM
Conference on Types in Language Design and Implementation.

" Greg Morrisett spent nine months visiting Microsoft's Cambridge Re-
search Laboratory, where he worked with researchers on programming
language and security technology. In particular, Morrisett worked on
the development of Microsoft's tools for automatically finding secu-
rity flaws in production code, based on his experience with Cyclone.
He also worked with student Kevin Hamlen and Microsoft researchers
on the implementation of the .NET rewriting tool for inline reference
monitors.

" Morrisett has also worked with researchers Martin Abadi and Ulfar
Erlingsson at Microsoft's Silicon Valley Research Lab.

Invited Lectures: G. Morrisett

1. Explicit Regions in Cyclone. Invited lecture, New England Program-
ming Languages Seminar. Boston, Massachussetts, October 2001.

2. Typed Assembly Language Background. Invited lecture, Intel Research
Professor Forum, Santa Clara, California, Januray 2002.

3. Type Checking Systems Code. Invited lecture, Yale University, New
Haven, Connecticut, February 2002.

4. Runtime Code Generation. IFIP Working Group 2.8 on Functional
Programming, Las Vegas, Nevada, March 2002.

5. Type Checking Systems Code. Invited lecture, European Symosium on
Programming, Grenoble, France, April 2002.

6. Type Checking Systems Code. Invited lecture, Cigital, Inc. Washing-
ton, D.C. April 2002.

7. Memory Management in Cyclone. Microsoft Research, Ltd. Cam-
bridge, England. October 2002.

10



8. Analysis Issues for Cyclone. Keynote speaker, Conference on Program
Analysis for Software Tools and Engineering. Charleston, South Car-
olina. October 2002.

9. Linearly Typed Assembly Language. IFIP Working Group 2.8 on Func-
tional Programming. Crans-Montana, Switzerland. January 2003.

10. Cyclone: A Type-Safe Dialect of C. University of Kent. Canterbury,
England. February 2003.

11. Cyclone: A Type-Safe Dialect of C. University of Birmingham. Birmhing-
ham, England. February 2003.

12. Cyclone: A Type-Safe Dialect of C. University of London. London,
England. March 2003.

13. Cyclone Memory Management. University of Edinburgh. Edinburgh,
Scotland. April 2003.

14. An Introduction to Typed Assembly Language. Invited lecture, Uni-
versity of Cambridge. Cambridge, England. May 2003.

15. Cyclone Memory Management. Keynote speaker, UK Memory Man-
agement Workshop. University of Kent. Canturbury, England. May
2003.

16. Tutorial on Language-Based Security. ACM Conference on Program-
ming Language Design and Implementation. San Diego, California.
June 2003.

17. Regions and Beyond in Cyclone. Yale University. New Haven, Con-
necticut. June 2003.

18. Type-Safe Memory Management in Cyclone. Air Force Research Lab-
oratory. Rome, New York. August 2003.

19. Security and Programming Languages. Harvard Industrial Partners.
Cambridge, MA. October 2004.

20. What's Next for an Academic PL Researcher? University of Pennsyl-
vania. Philadelphia, PA. November 2004.

11



21. Language Based Security. 10th European Winter School on Theoretical
Computer Science. Tallinn, Estonia. February 2005.

22. A Type-Safe Dialect of C. NSA Workshop on High Confidence Com-
puting. Baltimore, MD. March 2005.

23. Simplifying Regions. Carnegie Mellon University. Pittsburgh, PA.
March 2005.

24. Open Problems for Certifying Compilation. Usenix Security Sympo-
sium. Baltimore, MD. August 2005.

25. The Next ML? ML Workshop. Tallinn, Estonia. September 2005.

26. Simplifying Regions. WG 2.8 Meeting. Tallinn, Estonia. September
2005.

27. Making C Type-Safe. Purdue University, West Laffayette, ID. October
2005.

28. Static Extended Checking for Cyclone. Verification, Model Checking,
and Abstract Interpretation. Charleston, SC. January 2006.

29. Static Extended Checking for Cyclone. ITU University, Copenhagen,
Denmark, May 2006.

30. Static Extended Checking for Cyclone. IBM Research, Westchester
County, NY. September 2006.

31. Static Extended Checking for Cyclone. Intel Research Lab, Berkeley,
CA. October 2006.

Honors and Awards

G. Morrisett:

"* Sloan Fellow (1998).

e NSF Faculty Early Career Development (1999).

"* Presidential Early Career Award for Scientists and Engineers (2000).

12



"* Allen Newell Medal for Research Excellence, Carnegie Mellon Univer-
sity (2001).

"* Ralph Watts Excellence in Teaching Award, Cornell University (2001).

"* Best Paper, Usenix Security Symposium (2006).

13


